GENERAL ATOMICS MQ-1 UAV PREDATOR DRONE

GENERAL ATOMICS MQ-1 UAV PREDATOR DRONE

The General Atomics MQ-1 Predator is an unmanned aerial vehicle (UAV) built by General Atomics and used primarily by the United States Air Force (USAF) and Central Intelligence Agency (CIA). Initially conceived in the early 1990s for reconnaissance and forward observation roles, the Predator carries cameras and other sensors but has been modified and upgraded to carry and fire two AGM-114 Hellfire missiles or other munitions. The aircraft, in use since 1995, has seen combat over Afghanistan, Pakistan, Bosnia, Serbia, Iraq, Yemen, Libya, and Somalia.

The USAF describes the Predator as a “Tier II” MALE UAS (medium-altitude, long-endurance unmanned aircraft system). The UAS consists of four aircraft or “air vehicles” with sensors, a ground control station (GCS), and a primary satellite link communication suite. Powered by a Rotax engine and driven by a propeller, the air vehicle can fly up to 400 nmi (460 mi; 740 km) to a target, loiter overhead for 14 hours, then return to its base.

Following 2001, the RQ-1 Predator became the primary unmanned aircraft used for offensive operations by the USAF and the CIA in Afghanistan and the Pakistani tribal areas; it has also been deployed elsewhere. Because offensive uses of the Predator are classified, U.S. military officials have reported an appreciation for the intelligence and reconnaissance-gathering abilities of UAVs but declined to publicly discuss their offensive use.

Civilian applications have included border enforcement and scientific studies, and to monitor wind direction and other characteristics of large forest fires (such as the one that was used by the California Air National Guard in the August 2013 Rim Fire).

Development

The Central Intelligence Agency (CIA) and the Pentagon began experimenting with reconnaissance drones in the early 1980s. The CIA preferred small, lightweight, unobtrusive drones, in contrast to the United States Air Force (USAF). In the early 1990s, the CIA became interested in the “Amber“, a drone developed by Leading Systems, Inc. The company’s owner, Abraham Karem, was the former chief designer for the Israeli Air Force, and had emigrated to the U.S. in the late 1970s. Karem’s company had since gone bankrupt and been bought up by a U.S. defense contractor, from whom the CIA secretly bought five drones (now called the “GNAT“). Karem agreed to produce a quiet engine for the vehicle, which had until then sounded like “a lawnmower in the sky”. The new development became known as the “Predator”.

General Atomics Aeronautical Systems (GA) was awarded a contract to develop the Predator in January 1994, and the initial Advanced Concept Technology Demonstration (ACTD) phase lasted from January 1994 to June 1996. The aircraft itself was a derivative of the GA Gnat 750. During the ACTD phase, three systems were purchased from GA, comprising twelve aircraft and three ground control stations.

From April through May 1995, the Predator ACTD aircraft were flown as a part of the Roving Sands 1995 exercises in the U.S. The exercise operations were successful, and this led to the decision to deploy the system to the Balkans later in the summer of 1995.

During the ACTD, Predators were operated by a combined Army/Navy team managed by the Navy’s Joint Program Office for Unmanned Aerial Vehicles (JPO-UAV) and first deployed to Gjader, Albania, for operations in the Former Yugoslavia in spring 1995.

By the start of the United States Afghan campaign in 2001, the USAF had acquired 60 Predators, and said it had lost 20 of them in action. Few if any of the losses were from enemy action, the worst problem apparently being foul weather, particularly icy conditions. Some critics within the Pentagon saw the high loss rate as a sign of poor operational procedures. In response to the losses caused by cold weather conditions, a few of the later USAF Predators were fitted with de-icing systems, along with an uprated turbocharged engine and improved avionics. This improved “Block 1” version was referred to as the “RQ-1B”, or the “MQ-1B” if it carried munitions; the corresponding air vehicle designation was “RQ-1L” or “MQ-1L”.

The Predator system was initially designated the RQ-1 Predator. The “R” is the United States Department of Defense designation for reconnaissance and the “Q” refers to an unmanned aircraft system. The “1” describes it as being the first of a series of aircraft systems built for unmanned reconnaissance. Pre-production systems were designated as RQ-1A, while the RQ-1B (not to be confused with the RQ-1 Predator B, which became the MQ-9 Reaper) denotes the baseline production configuration. These are designations of the system as a unit. The actual aircraft themselves were designated RQ-1K for pre-production models, and RQ-1L for production models. In 2002, the USAF officially changed the designation to MQ-1 (“M” for multi-role) to reflect its growing use as an armed aircraft.

Command and sensor systems

During the campaign in the former Yugoslavia, a Predator’s pilot would sit with several payload specialists in a van near the runway of the drone’s operating base. Direct radio signals controlled the drone’s takeoff and initial ascent. Then communications shifted to military satellite networks linked to the pilot’s van. Pilots experienced a delay of several seconds between moving their joysticks and the drone’s response. But by 2000, improvements in communications systems (perhaps by use of the USAF’s JSTARS system) made it possible, at least in theory, to fly the drone remotely from great distances. It was no longer necessary to use close-up radio signals during the Predator’s takeoff and ascent. The entire flight could be controlled by satellite from any command center with the right equipment. The CIA proposed to attempt over Afghanistan the first fully remote Predator flight operations, piloted from the agency’s headquarters at Langley.

The Predator air vehicle and sensors are controlled from the ground station via a C-band line-of-sight data link or a Ku-band satellite data link for beyond-line-of-sight operations. During flight operations the crew in the ground control station is a pilot and two sensor operators. The aircraft is equipped with the AN/AAS-52 Multi-spectral Targeting System, a color nose camera (generally used by the pilot for flight control), a variable aperture day-TV camera, and a variable aperture infrared camera (for low light/night). Previously, Predators were equipped with a synthetic aperture radar for looking through smoke, clouds or haze, but lack of use validated its removal to reduce weight and conserve fuel. The cameras produce full motion video and the synthetic aperture radar produced still frame radar images. There is sufficient bandwidth on the datalink for two video sources to be used at one time, but only one video source from the sensor ball can be used at any time due to design limitations. Either the daylight variable aperture or the infrared electro-optical sensor may be operated simultaneously with the synthetic aperture radar, if equipped.

All later Predators are equipped with a laser designator that allows the pilot to identify targets for other aircraft and even provide the laser-guidance for manned aircraft. This laser is also the designator for the AGM-114 Hellfire that are carried on the MQ-1.